A new model for deflagration fronts in type Ia supernovae
نویسنده
چکیده
We present a new way of modeling turbulent thermonuclear deflagration fronts in white dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows full coupling between the front geometry and the flow field (Smiljanovski et al. 1997). Two different implementations are described and their physically correct behaviour for simple testcases is shown. Early results of the method applied to the concrete problem of Type Ia supernovae are published separately (Reinecke et al. 1998).
منابع مشابه
A new model for deflagration fronts in reactive fluids
We present a new way of modeling deflagration fronts in reactive fluids, the main emphasis being on turbulent thermonuclear deflagration fronts in white dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows full coupling between the front geometry and the flow field (Smiljanovski et al. 1997...
متن کاملar X iv : a st ro - p h / 00 05 34 1 v 1 1 6 M ay 2 00 0 Thermonuclear Explosions of Chandrasekhar - Mass White Dwarfs Thermonuclear Explosions
We present a new way of modeling turbulent thermonuclear deflagration fronts in Chandrasekhar-mass white dwarfs, consisting of carbon and oxygen, undergoing a type Ia supernova explosion. Our approach is a front capturing/tracking hybrid scheme, based on a level set method, which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flo...
متن کاملar X iv : a st ro - p h / 04 05 20 9 v 1 1 1 M ay 2 00 4 Simulations of Turbulent Thermonuclear Burning in Type Ia
Type Ia supernovae, i.e. stellar explosions which do not have hydrogen in their spectra, but intermediate-mass elements such as silicon, calcium, cobalt, and iron, have recently received considerable attention because it appears that they can be used as “standard candles” to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate...
متن کاملFlame-driven Deflagration-to-detonation Transitions in Type Ia Supernovae?
Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the i...
متن کاملType Ia Supernovae: An Asymmetric Deflagration Model
We present the first high-resolution three-dimensional simulations of the deflagration phase of Type Ia supernovae that treat the entire massive white dwarf. We report the results of simulations in which ignition of the nuclear burning occurs slightly off-center. The subsequent evolution of the nuclear burning is surprisingly asymmetric with a growing bubble of hot ash rapidly rising to the ste...
متن کامل